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I. INTRODUCTION

In this report we describe progress made in three different areas

of research. In all cases, our two previous technical reports [1,2]

are recommended background, and we shall freely call upon results

derived in them. First, a new image quality factor Q is defined, and

a variety of curves of Q vs. the average number of image photoevents,

N , are given for both precompensated and postcompensated imagery.

Second, a comparison of the photon noise-limited performance of amplitude

interferometry and speckle interferometry is presented. Lastly, we

describe the current status of our formulation of the least-squares

filtering problem when the filter is allowed to be space-variant or

nonlinear.

II. A NEW QUALITY FACTOR Q

In previous reports we have used a quality factor Q defined by

2J f Sj2 (DdQ dQ*2
Q = -1 (1)

where

N = the mean number of photoevents detected in the entire image;

rt
S the transfer function of the ideal system, which is taken to

be that of a diffraction-limited telescope with a circular

aperture;

SX and Sy = spatial frequencies measured in cycles per radian

of arc in the sky;

Here and throughout this report, quantities with a over them are
normali-ed to have value unity at the origin.
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B total blur OTF

0= the normalized average energy spectral density associated

with the object ensemble; and

c= the mean-squared error associated with the restored image.

The mean-squared error was stated explicitly as being [2]

-2 2

E = Jj + d2xdyv (2)-• I + X;2 Y

Note that the numerator of the fraction in expression (I) is

simply the ideal signal power. It is necessary to subtract unity from

the ratio due to the fact that in the limit where N -+ 0 , the denominator

Sapproaches the numerator, whereas we desire a quality measure that

goes to zero as N goes to zero.

Previous expressions for the transfer function of the restoration

filter have been presented in normalized form [1, p.16]

(l+N) SB*(o0H (2XQY ) = - 2 (3)

I + NIBI20

In order to arrive at a more satisfying definition of the quality factor

Q we have found it convenient to deal with un-normalized quantities in

some cases. The form of the un-normalized optimum transfer function can

be shown to be

-kNSB*(P
0

H (PX ,PQY) = - 2 (4)

- + N!BJP20

with k a constant given explicitly by

k h vk = v(5)

9 T b
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where

h = Planck's constant

v = the mean optical frequency

n = the quantum efficiency

T = the image integration time

b0 = the volume under the blur spread function b(x,y), i.e.,

00

b fb(x,y)dxdy (6)

When the constant k is included in the expression for the optimum

transfer function H , the expression for the mean-squared error becomes

" k2 I1i 2 ^ o

E f I "0 dQxdQy (7)
I' + NIBI 0

This expression for £ serves as a useful and meaningful representation

of the "noise" associated with the restored image, where the term "noise"

is used here in a general sense to include both random fluctuations

introduced by the random positions and random numbers of the photoevents,

and residual blur in the restored image.

The numerator or "signal" component of the new expression for Q

is also modified to be more reasonable. Rather than using the "ideal"

signal power in the image, we use instead the actual signal power in

the restored image. Thus the numerator of the expression for Q becomes

Nj { ýHf B 2 (t &z d~i (8)

where H is the un-normalized restoration transfer function. The new

quality factor Q thus becomes

-3-"
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(j) 2 k2 r Jd12 do
-B + P 0 o XdS x y

Substituting Eq.(4) for H ,we obtain

-00 dx

t: 2 (9)

OT) 2 k dx 0dy do

i Bl+N122  1 X Y

-00 0

The new quantity parameter defined above is more reasonable in its

S~behavior than the parameter used previously. Its most desirable
I properties are that Q- 0 as N-O and Q ultimately increases in

proportion to N as N grows arbitrarily large. This latter property

is expected for any measure of the mean-squared signal-to-noise ratio

of a Poisson-related variable.

We now present some specific curves of the new Q vs. N for

several cases of specific interest. The cases treated here are precisely

the same ones treated in our last technical report [2], and the reader

may wish to consult that reference for a more detailed discussion of the

assumptions behind each set of curves. In all cases it is assumed that

the object of interest is an ideal point source (•0 = 1). Figure 1

shows plots of iOgloQ vs. lOgloN for three different cases of post-

compensatioi,. In part (a) i't is assumed that a long-time-averaged image

is recorded. Various values of the atmospheric coherence diameter r

are shown, the case r 0 = corresponding to a perfect diffraction-

-4- )



(a)
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o 20cm
i0

-3 ý I I I-2
NO TILT REMOVAL

3
(b)

2

aaI

00m

-2 TI
01

-2 468I

Fig. I: C) vs. N for three different cases
of postcompensation: (iJ) no tilt
removal; (b) tilt removal, far field,
(c) tilt removal, near field.
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limited image, with only photon noise limiting the restoration. In part

(b), it is assumed that a perfect tilt-removing mirror is used as a pre-

compensator, and that "far field" atmospheric propagation conditions hold.

Finally, in part (c), tilt removal is again assumed, but "near field"

propagation conditions hold. Note the break point in the r 0 = 20 cm

curve, after which Q increases in proportion to N. All curves have

such a break point for large enough N , but only for the r 0 = 20 cm

curve does this point fall within the range of N shown here.

For comparison purposes, we show in Figure 2 the corresponding

curves of Q vs. N when no post-compensation is applied. Comparison of

Figs. 1 and 2 thus provides an indication of how much gain in quality

factor is provided by postcompens~tion at each level of N.

!n presenting the results for precompensation alone and for combined

pre- and postcompensation, the theoretical development presented in

reference [2] has been followed. Specifically, a shearing interferometer

with 317 subapertures has been assumed. The ratio of image integration

time T to wavefront sensor integration time T has been taken to be

'410 , and errors introduced by the temporal dynamics of the atmosphere

have not been included. The parameter a represents the fraction of photons

sent to the wavefront sensor, while I-f represents the fraction sent to

the image detection plane.

The curves of Fig. 3 show logioQ vs. logl 0 N for several cases

of precompensation alone (i.e., no postcompensation filtering used).

Part (a) assumes that a = 0.9 and shows the dependence of Q on

for several values of the atmospheric coherence diameter rO. Part (b)

assumes that r 0  10 cm and shows the corresponding dependence for three

- 6-
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0- I
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Fig. 2: Q vs. N with no precompensation or
p.stcompensation: (a) no tilt removal;
(b) tilt removal, far field; (c) tilt
removal, near field.
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Fig. 3: Q vs. N with precompensat ion alone:
(a) 1B=O.9, several values ofro
(b) ro-lOcm, several values of B;
(c) ro=r , several values of 9.
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values of a (0.3, 0.9, 0.99). Part (c) assumes that r 0  00

(no atmosphere) and again shows the dependence of Q on N for the

same three values of a. Note in the curves of part (b), in the absence

of any post-compensation the curves appear to saturate at a finite

value of Q , a property attributable to the wavefront fitting errors,

which do not depend on N. Such errors are not present when r = - ,0

hence the curves of part (c) continue to increase with N. Note also

that for the curves of part (b), the large values of 5 (0.9 and

0.99) achieve the best values of Q for a given N , but when no

atmosphere is present (part (c)), better image quality is ultimately

achieved (for large N) if less light is diverted to the wavefront

sensor. Since in the latter case the wavefront sensor serves no useful

purpose, these results make good sense.

Figure 4 shows several results of interest for combined precompensation

and postc, sation. In part (a) of the figure, r 0  is taken to be 10 cm,

and the dep ,dence of Q on N is shown for several values of a. The

curves do not saturate in this case at large N, due to the fact that post-

compensation removes the effects of wavefront fitting errors. In part

(b) of the figure, log10 Q is plotted vs. the splitting ratio 8 for

several fixed values of N. At high light levels (large N), an extremely

broad maximum is found, so the exact value of 5 is not of great conse-

quence. At low light levels (smaller N), a narrower maximum develops

in the region of large a (i.e., most of the light sent to the wavefront

sensor). Finally, in part (c), we have logI 0 Q vs. logl 0N for a fixed

splitting ratio (5 = 0.9) and for several values of r 0. The curves

for r 0  and r 0 = 20 cm are almost indistinguishable, while Q is

-9-
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noticeably reduced by smaller r 0 , a consequence of the increased

fitting errors.

Lastly, in Figure 5 we plot several curve-, of log10Q vs. log1 0N

for comparison purposes. In all cases r 0  taken to be 10 cm. Curve

(a) corresponds to the case of both precompensation and postcompensation,

with a - 0.9. Curie (b) corresponds to precompensation only, again with

S= 0.9. Curve (c) corre ponds to tilt removal and postcompensation

(B = 0, near field propagation), while (d) applies for postcompensation

only. Curve (e) shows the result for tilt removal only (no postcompensation),

while curve (f) corresponds fn no compensation whatsoever. Examination of

these curves reveals the gain in quality factor achieved by each type of

image compensation.

8 roOcm

6 (a

4-

-2 -, (o)

Iog 0oN

FIg. 5: Q vs. N: (a) precompensat ion and post-
compensation; (b) precopensat(ion only;
(c) tilt removal and postcompensation;
(d) pstcmpensation only; (e) tilt
removal only; at) no compensation.

(d) ~ -potopnain ony-e)tl



Ill. COMPARATIv. NOISE PERFORMANCE OF AMPLITUDE

INTERFEROMETRY AND SPECKLE INTERFEROMETRY

In this section we present an analysis which compares the signal-

to-noise performance of two techniques, one knowr s amplitude interfero-

metry and the second known as speckle interferometry. In order to make

this section as self contained as possible, we repeat certain portions

of material presented in previous reports [1,2], but an attempt *is made

to keep this repetition to a minimum.

We assume that we desire to obtain information about a distant

object, and that the atmosphere intervenes between our observation

instrument (a telescope) and that object. Both techniques of interezt

are used to recover only partial information about the object - namely,

we wish to estimate the strength of the squared modulus of the Fourier

spectrum of the object. For the techniques of concern here, no attempt

is made to recover the phase of the object spectrum.

A. SPECKLE INTERFERUMETRY

By the term "speckle interferometry", we mean the technique intro-

duced by Labeyrie (3] which depends on averaging the "energy spectra"

(squared moduli of the Fourier transforms) of a sequence of K short-

exposure photographs. By the term "amplitude interferometry", we mean the

general class of techniques which, by the insertion of masks or wavefront

folding prisms, operates the telescope as a Fizeau stellar interferometer

or a set of Fizeau stellar interferometers with different aperture spacings.

Examples are the interferometers of Currie [4] and of Breckinridge [$1.

Considering first the case of speckle interferometry, the predictions

of signal-to-noise ratio performance are based on a specific model of

- 12 -



the photodetection process which takes into account only the noise

generated by the finite number of photons utilized in the recording of

the image date and noise introduced by atmospheric fluctuations. The

image d.(x) detected on the jth exposure (exposure time assumed

short compared with the fluctuation time of the atmosphere) is modeled as

an inhomogeneous Poisson process. The form of the jth detected image

is thus N.
J

dj ) i X) 6(x X kj) (l

k=l

where each 6-function represents a discrete photoevent, and Xkj is

the location on the spatial detector of the kth photoevent. N.J

represents the total number of photoevents recorded during the jth

exposure. This inhomogeneous Poisson process is taken to have a rate

Aj(X) which is proportional to the classical image intensity i (-)

incident on the detector during the jth exposure interval,

W i( (12)

hV

where

r is the quantum efficiency of the detector;

T is the image measurement time (assumed identical for all

images);

h is Planck's constant; and

v is the mean optical frequency.

The speckle interferometry technique involves the following initial

steps:

I. F ch detected image dj(X) is Fourier transformed to produce

a 2-D spectrum Dj(-) , where

- 13 -



D d.(X) e- i21T ( XV dx (13)

2. The squared modulus of each such spectrum is taken, producing

3. These "energy spectral' are averacged over the set of K

independent pictures,

= - Dj (-) 2 (14)

Evaluation of the expected value of KD(6v)I2) shows [2] that it

can be expressed as

E [4JD (-) 12)] = V) (15)

where

"N is the expected number of photoevents in a single detected

image, and

M) represents the expected value of the energy spectrum of

the classical image intensity incident on the c.etector,

normalized so that (D(O) = 1.

In turn, we can express .(-) as

. = E(iBJ()I2lI-(j)I2 (16)

where Bj(V) is the optical transfer function of the atmosphere-telescope

th 2combination on the j exposure, and I(v)( is the energy scectrum

of the true object radiance distribution o(x) , but normalized such that

10(0)12=1.

If we assume that the telescope diameter D is much greater than

-14-



Fried's atmospheric coherence diameter r 0  (D/r 0 >> 1) , then in the

mid-frequency region of the telescope OTF it is known [3) that

2

E[B )2l r (r)2 'T(V) (17)

where BT(G) represents the telescope OTF. Combining (15), (16) and

(17), we find that a reasonable unbiased estimate of 0O(v)1 is

given by

____ <ID6~) 2 )-1O(v) -z 2 - (18)

TN2() 'T()

In assessing the performance of the estimator of Eq.(18), we must

find its variance for a given finite K. If in the end we wish to express

a signal-to-noise ratio associated with this estimator, we can equally

well calculate the signal-to-noise ratio associated with ID(\)I2 2

Fluctuations are expected in our estimate due to the fin;te number of

photoevents detected and due to fluctuations of the atmosphere from picture
2

to picture. The variance a 2 associated with a single measured value

of DI has been shown [1,21 to be

2 = )2 + 2(2+N)(-)2 ci(2 )

ID12  (19)

+ (q)2;(2+) + (2) 2 4()i i

2Removing the bias from the expected value of IDI in Eq.(15), the rms

signal-to-noise ratio associated with a single frame becomes

15 -



ii S ) ELID12] _

ID 12  (20)

n BT(V) l(V)

S" 1 2] 2_ 2 . +n B (}O\) + n2]"+n BvT(v)I( V2 [ T,)I + n B T(2v)io(2'v)l

2
where n 2-D) represents the average number of photoevents per

frame per atmospheric coherence area. If the K detected frames are

recorded with independent realizations of the atmospheric transfer function,

the rms signal-to-noise ratio associated with K frames becomes

(S)§aK) , (21)

These results are consistent with those obtained ear:ier by Roddier [6].

B. AMPLITUDE INTERFEROMETER

For the case of amplitude interferometry, several different measure-

ment configurations can be imagined. Two such configurations are considered

here, and the signal-to-noise ratios achieved are shown to be equal.

Nonetheless, this signal-to-noise ratio is different than that achieved

by speckle interferometry.

The first method of interest is obtained with only a slight modifi-

cation of the speckle interferometry technique. We insert a mask

in the aperture of the telescope; the mask contains two circular open-

ings, each of diameter approximately r 0  [7] and separated by a fixed

vector distance r, , as shown in Fig. 6(a). The corresponding diffraction-

limited telescope OTF has the form shown in Fig. 6(b). The center

frequency v I of the two bandpass islands of the OTF is given by

- 16-



+ + (22)
XF

where F is the telescope focal length and X the mean wavelength.

(a)

OTF
1.0

0 .5

-V0 -• -'•

(b)

Fig. 6: Amplitude interferometer

(a) pupil plane mask:
(b) OTF
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The bandwidth of these islands is

2r 0

B = 2 , (23)
X F

and the peak amplitude is 1/2.

A sequence of K pictures is taken, each with an exposure time

short compared to the fluctuation time of the atmosphere. The resulting

photon-limited images are Fourier transformed, and the squared moduli

of these transforms are averaged over the set of pictures, as before.

The effect of the atmosphere on any given picture is more simple in this

case than in the previous case of more general speckle imaging. If the

scintillation effects introduced by propagation through the atmosphere are

negligibly small, then, due to the fact that the individual aperture

openings are of size r 0 , the only effect of the atmosphere is to

randomly shift the phase of all Fourier componients within the bandpass

spectrum by a fixed amount. This phase shift is identical for all

frequency components within the spectral island, but it changes from

frame to frame.

The signal-to-noise ratio associated with the estimate IO(G0)I2

differs from that achieved in the previously considered speckle imaging

case. One reason for the difference is the different effect that the

atmosphere has on the detected images, as mentioned above. A second

reason arises from the fact that the collecting area of the speckle

imaging system is vD 2/4 while the collecting area in the present case

is only nro 22.

If we remove terms introduced by the fluctuating amplitude of the

atmospherically-induced OTF, the variance of DI2 becomes

a 2 2 + 4(n') 2+ 16(n) 2P + 16(n) 3 . (24)

-18 -



where we have taken account of the fact that the average number of

photoevents detected per frame is now 2n. The expected value of IDI 2

is in this case given by

E[ID12] = 2-n+ 4 )1(25)

Removing the bias from this expected value, and noting that

¢i(Vl) = IBT(Vl)i 2 I0(vl)I 2  = - jo(Vl)j (26)

we obtain for the single-frame rms signal-to-noise ratio

s (16() I( 1 )1 2/2 (27)
N 1 ÷ 2½(7

I +-- + 1

2n

A disadvantage of the above measurement technique is that only one

spacing rI can be explored at one time. More desirable would be a

system that allows many different fringes to be detected at one time.

Such a system has been proposed by Currie. The wavefront from the full

unobstructed telescope aperture passes through a wavefront folding inter-

ferometer, as illustrated in Figure 7. A detector placed at a single

point at the output of the wavefront folding interferometer detects the

mEECP WAVE FRONT DETECTORN PROCESSINGI

OTELESCP '-- FOLDING ARRAY ELECTRONICS
OPTICSERFEROMETE_

Fig. 7: Amplitude interferometer
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interference of light from two points on the telescope aperture, those

points being located at 1800 relative angular rotation about the center

of the telescope mirror. An entire array of detectors at the output of

the wavefront folding interferometer thus detects simultaneously the

interference between many different pairs of points, each pair being

separated by a different vector spacing r. If a frequency shifter is

placed in one arm of the wavefront folding interferometer, each detector

will see an oscillating intensity, the amplitude of which is a direct

measure of the amplitude of the object spectrum at the corresponding

spatial frequency.

The output d(t) of a given detector is subjected to an electronic

measurement system as shown in Fig. 8. The frequency w0 corresponds

to the angular frequency shift introduced in one arm of the interfero-

meter. The system shown detects the in-phase and quadrature components of

the oscillating signal, and combines these to estimate the squared magnitude

of the fringe amplitude. It is again assumed that a single detector sees

light collected from two wavefront patches. each of diameter rO.

The r;asured quantity Z = C2 + S2 can be showii to have the

following mean and variance:

Z = 2n+ (n)20(*v)I2
(28)

2 2n + 4C) + 4( )216(,)12 + 4(;)3I0(-)12
°z

Removing the bias from Z , we obtain an rms signal-to-noise ratio (based

on a single integration interval that is short compared to the fluctuation

time of the atmosphere)

- 20 -



( 1 ) Z - 2 n = 7 I O " ' ^ .,./ (2 9 )

d~t) z

Illi which is identical with the result obtained previously.

C.~~~ CO P RI O OF SP C L ANSMP I UDE AT RFE ROM TR

:FWe now compare the single-frame rms signal-to-noise ratios appropri-

II1| ate for speckle and amplitrude interferometry. in making the comparison,

II1[ we assume that the opt ical bandwidths, integrat ion times and opt ical

efficiencies of the two systems are identical. In addition, we assume [8]

_•I'Ithat the detectors for the two systems have identical quantum efficiencies.
Figure 9 shows plots of the single-frame rms signal-to-noise ratio

for a point-source object 0 1). For the case of the speckle

interferometer we assume that v/v 0  0.8 (v 0 = diffraction-limited

- 21 -
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-4-

-6 AMPLITUDE

106 I07 10-4 I01 10.2 I0' 100 101 102 10

Fig. 9: Signal-to-noise ratios, speckle
vs amplitude interferometer,
I6!2 =

cutoff frequency)and D/r 0 = 16 (1.6 meter telescope diameter with

r0 = 10 cm). The chief conclusions to be drawn from these curves are:

1. For n << I , the rms signal-to-noise ratios of both techniques

increase in proportion to (n)3/2

S(1) - 3/2
amplitude 22 r2

speckle - (1)

N r0 T

For the parameters chosen here speckle interferometry is superior

to amplitude interferometry in this range by a factor of 4.7;

-22



2. For n in the range 0.1 < n < 1.0 , the curves cross, and

amplitude interferometry becomes superior to speckle

interferometry;3. Frn >» 1 , the S1

For for speckle interferometry asymptotically

approaches unity, never exceeding that value, while for amplitude

interferometry it continues to increase as Vf/2 indefinitely.

In Figure 10 we show the corresponding curves for v/v0 = 0.8,

D/r 0 = 16 , but a much smaller object spectrum lI2 = 10-4. For very

small values of n , speckle interferometry remains superior to amplitude

interferometry, but by a smaller margin than previously. In the vicinity

of n= 102 for speckle interferometry and n I for amplitude inter-

0

-2- AMPL I TUD

-4 ECKLE

log10 )

-6-

1 1 -3I 1 0I 10' 0 I03 1

Fig. 10: Signal-to-noise ratio, speckle
VS. amplit~de interferometry
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ferometry, both curves change from an (n)312 increase to an n

increase, with amplitude interferometry superior to speckle interfero-

metry. Eventually, for values of n so large as to be off this figure,

the speckle interferometry curve will saturate at value unity, while the

amplitude interferometry curve will begin to increase in proportion to

n-.

IV. SPACE-VARIANT AND NONLINEAR RESTORATION TECHNIQUES

Our past work on the restoration of photon-limited, blurred images

has considered only the case of linear, spac4!-invariant restoration

filters. Based on the intuitive feeling that improved restorations can

be obtained with linear space-variant filters and nonlinear filters, we

have begun to explore such possibilities. The question which is of

major concern here is how much improvement in restoration filter perfo

ance can be achieved by going to the decidedly more complex space-

variant and nonlinear restoration schemes. Our work in this area has

progressed at least to the point where the formulation of the problem has

become clearer.

In anticipation that future technical reports will detail this work

more thoroughly, we mention here the current state of our knowledge,

without any specific "proofs" of the results stated.

The most general formulation of the linear least-squares filtering

problem can be appreciated by reference to Figure 11. Fo, simplicity,

we treat space as a one-dimensional variable x , the results being

easily generalized to two dimensions. The object radiance distribution

o(x) is assumed to b- a random process, but for generality it is allowed

to have space-variant or non-stationary statistics. The object o(x)
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Fig. II: Space-variant least-squares
filtering

is degraded by a linear blur with space-variant point spread function

b(x,x'). This blurred image is then converted to a detected image by

passage through the "Poisson generator", which generates an inhomogeneous

Poisson impulse process, with rate X(x) proportional to the classical

image intensity,

(x) W DJ i Wx (30)

h v

The detected image then passes through a linear, possibly space-variant,

restoration filter with impulse response h(x,x'). The impulse response

i --

h(x,x') is chosen to minimize tSa mean square error between the restored

image r(x) and an "ideally filtereu' version of the object, i(x). The

ideal filter may in general be space-variant, and its impulse response is

represented by s(x,xi).
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Without presenting a proof, we simply state that the Impulse

response of the optimum restoration filter can be shown to he a function

h(x,x") satisfying the i;,tegral equation

sh(xx)Rd(x,x" )dx '
-00

00 (31)
= S(xx)Rdo(X XA)dxA

where

Rd (x',x ') = E[d(x A)d(x A')]
(32)

Rdo(x',x") = E[d(xA)o(xA)]

In turn, the correlation functions of interest can be expressed as

R d(XXA') = nT T(x)6(x,-x") + 2-2 R i(x'x")
h- hv (33)

R d o x ', -') = 2- 1 R io (X ' ,X ' ' )
hv

where

R.(x',x') = E[I(x)I(x'•)]
(34)

R io(x',x") = E[i(x-)o(x'-)]

Finally we note that

i0x) b(x,x ') o(x^-)dx'" (35)

A case of major interest is obtained if the blur spread function

b and the ideal spread function s are space-invariant, but the object

itself is non-stationary. Since the objects of prime interest here are

of finite size, they must of necessity have spatially non-stationary
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statistics. The correlation functions of interest become

R i(x 'x'") = i b (x''•)bR(e;x--n)d (F qd"
00 (36)

where R (&,x") is the autocorrelation function of the non-stationary

object.

In some cases it is possible to argue that the object is non-stationary

primarily by virtue of a non-stationary second moment. In such cases,

the autocorrelation function of the object takes the approximate form
Ix'+x- (37

Ro0(X"Xx") =•ro 0( 2 )o(x'-')(7

The idealized case of an object with a "white" spectrum yields the auto-

correlation function

R (x-,x) X r(x+x,)_ 6(x'-x") (38)

An additional case of interest is that of a statioiiary object

multiplied by a "window' function w(x). If ro(x--x") represents the

autocorrelation function of the original stationary object, the auto-

correlation of the windowed object is

R (x',x") = w(x')w(x")r (x'-x") (39)
0 0

It is perhaps worth special mention here that, if the blur filter

and the ideal filter are space-invariant and the object is statistically

stationary, then we can show from the result3 presented above that the

filter which achieves minimum mean-square error is always the space-

invariant filter derived in our previous reports [1,2]. Such a filter
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remains optimum in spite of the signal-dependent character of Poisson

noi e.

In addition to the linear space-variant filters discussed above,

we are also beginning preliminary studies of the nonlinear filter shown

in Fig. 12(a). In this case the filter is taken to be linear and space-

invariant, with the transfer function (see Eq.(4))

dlx) •rlx) (a

HM (a)

"Ol (b)

Fig. 12; Realization of non-linear filter
(a) direct; (b) with feedback
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appropriate for minimizing mean-squared error. However, the parameter

N is no longer taken to be equal to the average number of photoevents

in the entire image. Rather, the detected image d(x) is passed through

a linear, invariant smoothing filter with impulse response g(x) , the

purpose of which is to produce a local average value of N. Thus N

is a function of x , and the filter parameter is chosen appropriately

for the local photon environment. In regions of the picture where there

have been very few photoevents, very little enhancement will be attempted,

but in regions where the number of photoevents is large, greater enhance-

ment is attempted. Such a filter has a characteristic that is highly

dependent on the detected signal d(x) ; it is this signal-dependent

character that causes the filter- to be nonlinear. There is no doubt that

such a filter can perform better than any linear filter in restoring photon-

limited images. The key questions are how much better it can perform,

and whether the increased performance is worth the extra computational

complexity involved. As a potentially helpful fact, we note that the

required transfer function can be realized by the feedback structure of

Fig. 12(b), where the parameter N is controlled simply by varying the

gain of the feed-forward filter.

Work on the topics outlined in this section is still in progress and

will be reported on in greater detail in our next technical report.
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7. We assume that the diameters can be made as large as rO

However, eliminating the effects of wavefront tilt ov'er the

individual apertures may require somewhat smaller openings.

8. If any of these assumptions should prove to be false, the curves

for speckle and amplitude interferometry must be moved horizontally

with respect to each other.
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METRIC SYSTDI

BASE UNITS:
Quantity Unit SInS.bol rua

length metre m .,
mm" kilogram kg
time second I
electric current ampere A
thermodynamic temperature kelvin K
amount of substance mole aol ...
luminous intensity condea cd ...

SUFPTLEMETAUY UNITS:

plane angle radian red ...
solid anile steradian at ...

DERIVED UNITS:

Acceleration mer par second squared ... 1s
activity (of a radioactive soume) disintegration per second ... (disintegration)s
angular acceleration radian per second squared ... Odxs
angular velocity radian per second ... rds,
area square metre ... I
density kilogram per cubic metre ... kWm
electric capacitance fared F A.alV
electrical conductance siemens S AN
electric field strength volt per metre Vim
electric inductance henry H V.s/A
electric potential differnce volt V WIA
electric resistance ohm VIA
electromotive force volt V WIA
energy joule I N.m
entropy joule per kelvin ... /K
force newton N kg.nms
frequency hertz Hz (cyc!e)/s
illuminance lux lx ImIm
luminance candela per square metro odtm
luminous flux lumen Im cd.er
magnetic field strength ampere per metre Aim
magnetic flux webes Wb V.8
magnetic flux density tools T Wbhn
magnatomotive force ampere A
power watt W is
pressure pascal Pa Nim
quantity of electricity coulomb C A-s
quantity of heat joule J N-m
radiant intensity watt per steradian ... Wier
specific heat joule per kilogram-kelvin ... J/kg.K
stress pascal Pa Nfm
thermal conductivity wet' per metre-kelvin ... Wlm.K
velocity metre per second mis
viscosity, dynamic pascal-second ... PA.
viscosity, kinematic square metre per second ams
voltage volt V WIA
volume cubic metre ... m
wavenumber reciprocal metre (wave /m
work joule I N.m

SI PIUFIXES:

Multiplication Factors Prefix SI Symbol

1o000 00 OO 000 !- lo" tere T
1000000000- 10' giP G

t00000o 1 MOA mS M
1000- to kilo k

100o 10o hecto* h
10 10' deka" do

0.1 - t0' docI d
0.01 - 10' Oenti* c

0.001 - 10-0 milli m
0.000001 - 10- micro A

0.000 000 001 10-9 nano n
0,000 000 000 001 - 10-12 ico

0.000 000 000000 001 - 10" Iem C o
0.000 000 000 000 000 001 - 10-'8 Atto a

To be avoided where pceslble. ,u• GOvImNUM9a lumW1m OFFICE: lWY-7I4-4m/om
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